Iterated Bernstein polynomial approximations

نویسنده

  • Zhong Guan
چکیده

Iterated Bernstein polynomial approximations of degree n for continuous function which also use the values of the function at i/n, i = 0, 1, . . . , n, are proposed. The rate of convergence of the classic Bernstein polynomial approximations is significantly improved by the iterated Bernstein polynomial approximations without increasing the degree of the polynomials. The same idea applies to the q-Bernstein polynomials and the Szasz-Mirakyan approximation. The application to numerical integral approximations is also discussed. MSC: 41A10; 41A17; 41A25.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K-functionals and multivariate Bernstein polynomials

This paper estimates upper and lower bounds for the approximation rates of iterated Boolean sums of multivariate Bernstein polynomials. Both direct and inverse inequalities for the approximation rate are established in terms of a certain K -functional. From these estimates, one can also determine the class of functions yielding optimal approximations to the iterated Boolean sums. c © 2008 Elsev...

متن کامل

Numerical resolution of some BVP using Bernstein polynomials

In this work we present a method, based on the use of Bernstein polynomials, for the numerical resolution of some boundary values problems. The computations have not need of particular approximations of derivatives, such as finite differences, or particular techniques, such as finite elements. Also, the method doesn’t require the use of matrices, as in resolution of linear algebraic systems, no...

متن کامل

Bernstein measures on convex polytopes

We define the notion of Bernstein measures and Bernstein approximations over general convex polytopes. This generalizes well-known Bernstein polynomials which are used to prove the Weierstrass approximation theorem on one dimensional intervals. We discuss some properties of Bernstein measures and approximations, and prove an asymptotic expansion of the Bernstein approximations for smooth functi...

متن کامل

Bernstein Approximations of Dirichlet Problems for Elliptic Operators on the Plane

We study the finitely dimensional approximations of the elliptic problem (Lu)(x, y) + φ(λ, (x, y), u(x, y)) = 0 for (x, y) ∈ Ω u(x, y) = 0 for (x, y) ∈ ∂Ω, defined for a smooth bounded domain Ω on a plane. The approximations are derived from Bernstein polynomials on a triangle or on a rectangle containing Ω. We deal with approximations of global bifurcation branches of nontrivial solutions as w...

متن کامل

On Bernstein Type Inequalities for Complex Polynomial

In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009